

Biomass to Hydrogen

Robert J. Evans
National Renewable Energy Laboratory

Operated for the U.S. Department of Energy by Midwest Research Institute • Battelle • Bechtel

NREL Biomass Feedstocks

6
$$CO_2$$
 +6 H_2O \rightarrow $C_6H_{12}O_6$ +6 O_2 sunlight

Potential: 15% of the world's energy by 2050. Fischer and Schrattenholzer, *Biomass and Bioenergy* 20 (2001) 151-159.

Crop residues

Forest residues
Energy crops
Animal waste
Municipal waste

Issues: Availability and Costs

H₂ from Biomass

Potential

- H₂: the Inevitable Energy Carrier of the Future
- Biomass is Renewable
- Zero Net CO₂ Impact
- Potential for Near Term Renewable H₂Deploym

Challenges

- No Completed Technology Demonstrations
- Low Yield of H₂
- Not yet competitive with Natural Gas Steam Reforming
- Requires Appropriate H₂ Storage and Utilization Scenarios

Potential Impact

- Bioenergy
 - Supply 15% of the world energy by 2050 150 EJ
 - Economic Renewable H2 in the Near Term
 - Deployment in Developing Energy Markets
 - The Biomass Refinery: Co-product Economics
- Hydrogen As the Energy Carrier
 - Flexibility: Biological and Thermal Routes
 - -CHP
 - High Efficiency Conversion
 - Environmental Benefits
 - Allows Integration with other Renewable Technologies

Biomass -> H₂ Integration

Feedstock Supply

- Biosolids
- Animal waste
- Sludges
- Food wastes
- MSW
- Urban wood
- Ag. residue
- Forest waste
- Energy crops
- Designer crops

Conversion Technology

- Supercritical
- Pyrolysis
- Low pressure gasification
- High pressure gasification
- -Storable inter.
 reforming:
 ethanol
 methanol
 methane
 Pyrolysis oil

Co-Product Markets

- -Electricity
- Fuelsethanolbiodiesel
- Chemicals high value CO2
- Materials
 biopolymers
 biobased
- -C Sequest.

NREL Possible Development Scenario

	Near Term	Mid Term	Long Term
Biomass	Resid. Biomass Pyrolysis/ SR Coproducts Cofeed NG	+ Energy Crops+ Gasification+ C Seqest.+ Adv. Coal	+ Biomass Refineries
Hydrogen	On-Site Prod Hythane NG, Electrol.	+ Storage + Dist. Gen. + Fuel Cells	+ Hydrogen Economy

Economics

Major assumptions:

- 15% after-tax IRR
- 20 year plant life
- nth plant

- MACRS depreciation
- 90% capacity factor
- Equity financed

Biomass Gasification

Multi-Stage Gasification

http://ww.ficfb.at

TPS Termiska Processer (SE)

- Feedstock variety
 - variety of biomass / waste feedstocks, RDF
- Scale
 - 18 MWth test facility Värnamo (SE)
 - 2.5 MWth pilot in Studsvik (SE)
 - industrial units
 - ARBRE (UK): 25 MWth (40 000 t/a energy crops)
 - Greve in Chianti (IT): 2*18 MWth (200 t/d pelletised RDF)
- Technology
 - pressurised CFB gasification
 - hot gas conditioning

VTT Processes (FI)

- Feedstock variety
 - biomass / waste
- Scale
 - gasification
 - CFB: 60 MWth
 19 t/h wood + waste (Lahti)
 - fixed bed:0.5 MWth (new pilot)
- Technology
 - CFB gasification
 - fluid bed gasification
 - fixed bed updraft gasification
 - biomass fuel production

Research, Development and Deployment Challenges

- Feedstock preparation
- Gasification: gas conditioning
- Pyrolysis: co-product development
- Modular systems
- System integration
- Bio-oil reforming demonstration
- Wet Biomass Demonstration

NREL Pyrolysis Process Concept

NREL TCPDU - Reformer Installation

Reformer at TCUF

NREL TCPDU - Hydrogen Production

5-13-2002 Exit Gas Composition (peanut)

Pyrolysis Mass Balance

Blakely Georgia Site

Research & Development	<u>D</u> emonstration		
	Initial System Prototypes	Refined Prototypes	Commercial Prototypes
 Research on component technologies General assessment of market needs Assess general magnitude of economics 	 Integrate component technologies Initial system prototype for debugging 	 Ongoing development to reduce costs or for other needed improvements "Technology" (systems) demonstrations Some small-scale "commercial" demonstrations 	 "Commercial" demonstration Full size system in "commercial" operating environment Communicate program results to early adopters/ selected niches

Scale up Plan

NR≣L Biocarbon-Based Fertilizers

Impact assumptions

- Biomass target:15% of energy supply
- Assume 1/3 goes to H2
 = 5 exajoules for US
- Model on GA with population 8 million (50% rural, 50% urban)

Peanut shells are 10% of required Ag residues

Assume equal supply:

- Ag Residues
- Forest residues
- Energy Crops
- Animal Manures
- MSW
- ~2 million tons/ year each
 - Low % of total potential

Traditional Facility Location

Biomass Facility Location

- Discrete Suppliers
- Economies of Scale

- Continuously-distributed Supply
- Transportation Intensive
- Economies of Scope

Qualitative Behavior of Total Costs for Processing Fixed Biomass Quantity

Summary

- Potential long term contribution of Bioenergy is 15%
- Biomass to Renewable Hydrogen is a promising near term approach with Coproduct production
 - Pyrolysis with co-products \$7-9/MJ = Competitive!
- Shakedown of 7 kg/hour Catalytic Fluid Bed Reactor for over 100 hours of operation
- Work to begin at Georgia Site for 1000 hour run

Acknowledgements

- Support of the US DOE Hydrogen Fuel Cells and Infrastructure Technologies Program
- Coworkers at NREL and Georgia Team
 - Clark Atlanta University
 - Scientific Carbons/ Eprida Inc
 - Enviro-Tech Enterprises Inc.
 - Georgia Institute of Technology